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Abstract 

Noncentrosymmetric structures are considered in terms 
of a generalized substructure formulation. Inclusion 
of dispersion, bonding and anharmonicity leads to 
generalized expressions for Bijvoet ratios. Methods of 
numerically estimating the effects due to bonding and 
anharmonicity upon the Bijvoet ratios are suggested. 
Allowance for bonding and anharmonicity is shown to 
have wide implications for the breakdown of Friedel's 
law. Subsets of reflections that obey Friedel's law in the 
conventional approximation are now shown to violate 
it. These violations are of considerable importance for 
measuring antisymmetric contributions due to bonding 
and anharmonic thermal vibrations. The possibility that 
bonding effects will result in the appearance of Bijvoet 
differences in noncentrosymmetric structures of ele- 
ments is explored. 

Introduction 

Early X-ray investigations of the zinc blende structure 
led Friedel (1913) to conclude that the X-ray diffrac- 
tion pattern of a noncentrosymmetric structure cannot 
reveal the absence of a centre of symmetry. The 
intensities of a Friedel pair of reflections with Miller 
indices hkl and hid are thus expected to be equal. This 
is often referred to as Frieders law. Later work of 
Nishikawa & Matukawa (1928) and of Coster, Knol & 
Prins (1930) clearly demonstrated the breakdow0, of 
Frieders law when the effects of anomalous dispersion 
are appreciable. Peerdeman, van Bommel & Bijvoet 
(1951) showed that the non-equivalence of the inten- 
sifies of Friedel pairs of reflections could be exploited 
not only to determine the absolute configuration ofnon- 
centrosymmetric crystals but also as a significant aid in 
the determination of phases in structure analysis. 

Useful measures of the breakdown of Friedel's law 
are provided by the Bijvoet intensity difference, defined 
as the difference in intensity between a Friedel pair of 
reflections or their equivalents, and the Bijvoet intensity 
ratio, obtained by dividing the Bijvoet intensity dif- 
ference by the average intensity of the pair of 

* Present address: Institute of Chemistry, University of Uppsala, 
Uppsala, Sweden. 

0567-7394/79/020260-06501.00 

reflections. The latter is particularly convenient because 
it is independent of scale factor and its measurement is 
relatively free of other types of systematic errors. 

Accurate measurements of these quantities are of 
considerable importance in the determination of phases 
and absolute configurations and also in tests of the 
theoretically calculated values of the dispersion correc- 
tions (Zachariasen, 1965). For a review of current 
anomalous-scattering techniques, the reader is referred 
to Ramaseshan & Abrahams (1975). 

It is the purpose of this paper to show that the 
Bijvoet difference and the Bijvoet ratio may also yield 
significa0t information about the atomic features of 
nonspherical charge distributions and anharmonic 
thermal vibrations. Moreover, these features may them- 
selves lead to further restrictions on the validity of 
Friedel's law, and thereby provide a particularly 
sensitive measure of the parameters describing these 
features. 

Generalized substructure formulation 

In the generalized structure factor formalism (Dawson, 
1967a) the structure factor F(S) for a particular 
scattering vector S can be written in terms of the atomic 
scattering factors fs and the thermal vibration factors 
Tj of the atoms at nuclear positions rj in the unit cell: 

F ( S ) =  ~ fj(S) Tj(S) exp (2~S. rj) (1) 
J 

where f j  and Tj are the Fourier transforms of the 
atomic charge distribution pj and nuclear smearing 
amplitude tj respectively. 

In general, both pj and tj are noncentrosymmetric 
and hence f j  and Tj are complex: 

fj(S) = fc.j(S) + ifa.flS) (2a) 

T j ( S )  = Zc, j(S) + iZa, j(S) (2b) 

where the subscripts c and a refer to the centrosym- 
metric and antisymmetric components respectively. For 
X-rays we also include the effects of anomalous 
dispersion: 

f j(S) = fc.j(S) + i f a.j(S) + f j  + i f~' 
= f ' , j (S )  + ifa.j(S) + i f j '  (3) 
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where fJ  and f ] '  are the real and imaginary 
dispersion corrections of atom j .  Since f~ has the same 
centrosymmetric properties as fc, j(S), they can be 
combined in a single term f ' ,  y; this is obviously not the 
case for f y .  (For simplicity we have disregarded any S 
dependence of the dispersion corrections.) 

Rather than use equation (1) in its present form, it is 
more convenient to extend Iwasaki's (1974) sub- 
structure description to include anharmonicity and the 
non-spherical charge distribution due to bonding. 

Let us consider a crystal with N types of atoms 
divided into N substructures such that the pth sub- 
structure, ~'~p, is composed of atoms of only the pth 
type. Atoms are in general of the same type only if they 
are of the same chemical species and have identical 
atomic environments in both chemical species and 
orientation, and hence identical values of f j  and Tj. 

For example: (i) in diamond we have two sub- 
structures, corresponding to the two orientations of 
environments about the C atoms (Fig. 1); (ii) in zinc 
blende we also have two substructures; however, each 
of these consists of a different chemical species in a 
different environment; (iii) in the wurtzite structure, 
there are four substructures, one for each atom in the 
unit cell; here each atom has a different atomic environ- 
ment either in chemical species or orientation (Fig. 2). 

. . -  " . . . . . . . . . . . . . . . . . . . . . . . . .  ::0 

Fig. 1. The diamond structure. The two substructures are denoted 
by solid and open circles. 

Fig. 2. The wurtzite structure. The size of each circle indicates the 
atomic species; the two substructures for each species are denoted 
by solid and open circles. The dashed line defines the hexagonal unit 
cell. 
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Equation (1) now becomes 

F(S) = ~ F,(S) exp (2n/S. up) 
p 

= ~  fp(S)Tp(S)Gu(S)exp(27ffS.up) (4) 
p 

where up is the vector from the origin of the unit cell to 
the chosen origin of the substructure Y . ;  f p  and Tp 
are the atomic scattering factor and thermal vibration 
factor for atoms in Yp;  Fv(S ) and Gv(S) are the 
structure factor and effective geometric factor respec- 
tively for ~9~ v. 

In practice the number of substructures into which a 
given structure must be divided decreases with decreas- 
ing sophistication of the model. Introduction of bonding 
and anharmonic thermal motion, which depend on the 
environment of a given atom, will result in greater 
differentiation of atoms. This differentiation will depend 
on the number of terms retained in the expansions for 
fp  and Tp. 

Introducing the appropriate quantities in terms of 
real and imaginary parts, we find that the square of the 
absolute value of the generalized structure factor is 
(suppressing S) 

IFhkll2 : ~ ,  ~r2[ f,2 2 --p~J c,p + f~,v + f v' 2 
P 

t t  2 + 2fa, pf~ ][Tc2.p + T~.p] 

+ Z Z Gp Ga{tfc, pf~.q +fa, vfa, q 
P q C P  

?? ?? 
+ f p f ~  + 2fa, j q ' ]  
X [(Te, vTc, q + Ta, pTa, q) Cp a 

+ (Tc.,, Ta.a -- ~',,.,, Tc.~) s,,~] 
• , £ '  £ " 1  + 2[f 'pfaq+.,c.p. ,  q , 

x [-(Tc, v 7"o,~- To,~ rc, a)% 
+ (Te.pTe. q + Ta.pTa. q)Spq]}, (5)  

where 

Gp(S) = Gp exp (iyp) 
Cpq = cos [2~rS. (up -- %) + yp -- 7q] 
Spq = sin [2~rS. (up -- uq) + yp -- 7ql. 

The generalized Bijvoet intensity ratio 

The Bijvoet intensity ratio is defined as 

/ t l  IFhkl [ 2 -  I F ~ l  2 
Bhkl : - -  = (6) 

&v ½(IFh,112 + IF~d ~) 

where Iav is the average kinematic intensity and AI is 
the intensity difference of a Friedel pair of reflections. 
Friedel's law, A1 = 0, is valid for all centrosymmetric 
crystals. As we have already pointed out, for a non- 
centrosymmetric crystal containing anomalous scat- 
terers Friedel's law does not generally hold. 
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In general a crystal cannot contain only one 
substructure for which f . ,p  and T.,t, are nonzero, 
regardless of how many centrosymmetric sub- 
structures it also contains. Furthermore, a noncentro- 
symmetric crystal contains no centrosymmetric site 
symmetry. It follows, therefore, that a noncentro- 
symmetric crystal must consist of at least two sub- 
structures and for these f~, t, and T., t, are nonzero. 

_ _ _  

In the expressions that follow all functions for the hkl 
reflection are evaluated in terms of the functions for the 
hkI reflection by using the fact that in going from S to 
- S  all centrosymmetric functions are unchanged while 
all antisymmetric functions are changed in sign alone. 

For a general structure the Bijvoet intensity dif- 
ference is 

A i =  4 ~ GZ f f , ,[ TZc t, + z - t , a a , p J  t, , T a ,  p] 
p 

+ 4 E E GpGq{fa,t,f~'[(rc,t,rc, q + ra,t,Ta,q)cm 
P qg=p 

+ (Tc.t, Ta. q -- Ta. p Tc.,) Spq] 

+ f'J e, t,JC"[--(Tc pTaq- -  Ta pTc, , , , 

+ (Tc, t,Tc, q + Ta, uTa,q)sm]}. (7) 

Although the introduction of the antisymmetric atomic 
functions f a  and T a has greatly expanded the ex- 
pression for AI,  it can be seen that a nonzero 
anomalous dispersion correction f ~  is still a necessary 
condition for Friedel's law to break down. The average 
intensity of the Friedel pair is 

Iav ~ 2 I r , 2  z ,,2 2 = + f ;  ][T~c + Ta,t,] ~ p t j  c , p  + f 2  p ,P  

P 

+ E E Gt, Oq{[fc, p f ' q  +fa, pL,  q +f~'  fq ' l  
P qCP 

x [(Tc, t, Tc, q + r~,t,To, q)%q 

+ (Tc.t,Ta.q-- Ta.t,Tc.q)sml 

+ 2f',J~,qt-(rc, t,ra,q- r~,t,r¢,t,)% 
+ (rc, t, rc, q + Ta, p T~,q) s m] }. (8) 

The effect o f  bonding on the BO'voet ratios (T~ = O) 

If we consider low-angle reflections where T a may be 
neglected, equations (7) and (8) reduce to 

A I ( T  a = O ) = 4  ~ G 2 f f "  T 2 
~ p J a ,  p a p  e , p  

P 

+4E E Gt,G {f f "  q a a, p.r q Cpq 

P qCP 

f '  f "  } T c p T  (9) • ., c, pa  q Spq  , c, q 

and 

I~v(7o = o ) =  E ~ r  r,2 ~ ,,~ T~ ,-,t,<a c,p + f~ ,p  + f~, ] c,p 
p 

+ E E Gt,Gq{tf;,pf~,q 
P q C P  

+ L ,  j a ,  q + f~' fq ' l%q 

+ 2 f 'p f~ ,qspq}  To, pTc, q. (10) 

In the approximation of a spherical charge distri- 
bution, a single atom appears identical regardless of the 
direction from which it is viewed. When a redis- 
tribution of charge occurs due to bonding, the atom is 
no longer spherically symmetric and, in particular, it 
may no longer appear identical when viewed from 
opposite directions. Thus, we obtain a contribution 
given by the first term in equation (9). 

In the analysis of most cubic structures fc, j and To, j 
are assumed to be isotropic. If f a  is neglected all 
reflections at the same value of (sin 0)/2 will have the 
same absolute value of the Bijvoet ratio. However, 
since f~ is direction dependent, different values of the 
intensity ratio will be obtained for these reflections 
when f a  is included. Unfortunately, for most cubic 
structures the contribution due to f~ is only significant 
in the region where it is rare for more than one 
reflection to occur at the same Bragg angle. We know 
of no instance in which such a difference between 
Bijvoet ratios has been reliably observed. 

The most significant bonding contribution to A1 and 
Iav is from the terms containingf~,pf,['cpq andfPc.pfa, qSpa 
respectively. By comparing these with the generally 
dominant terms in each expression, f ' e f~ ' spq  in equa- 
tion (9) and f ' p f ' , q c v q  in equation '(i0), we obtain 
an estimate of the mean effect of the redistributed 
charge on AI  and Iav" This, of course, assumes that 
all substructures contribute similarly. The proportional 
contribution to the Bijvoet ratio due to bonding, 
[B(f~ ¢ 0) -- B( fa  = 0) ] /B(f  a = 0), is then given 
approximately by the ratio f~ p/fop. No single general 
expression is available for J'a,pi however, we will 
assume from the studies of diamond (Dawson, 1967b) 
and zinc blende (Moss, 1977) that the value off~,p is 
about the same for all atoms at the peak of the bonding 
charge redistribution and take fa,p = 0.15 (e.u.). At 
low Bragg angles, in the region of the maximum of 
f~,p, we can takef~,p ~ Zp, the atomic number. Thus, 

f a, p / f  c, p~O.15 /Zp ,  (11) 

a very small contribution indeed. This approximation is 
only a guide to the mean effect on the intensity 
difference. For particular reflections the effect of f a  
may be much more significant, especially if the 
reflections are weak. 

The effect o f  anharmonicity on the Bijvoet ratios 
( L = 0 )  

For high-angle reflections, where f a  may be neglec- 
ted, equations (7) and (8) become: 

A I ( f a  = O) = 4 ~ ~. VpCr f '  f " [ - - ( T  c p T - - q J  c, p v  q , a , q  

P q C P  

-- T~,p Tc, q) C~q 

+ (Tc, pTc, q + Ta, pTa,q)sml (12) 
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and 

I a v ( L = O ) = y G 2  ! f,2 +f, ,2]  2 2 - -pLa  c,p J p [Tc, p + T,,,p] 
p 

+ Z ~, OpGq{[f[,pf~, a +fv ' f~ ' ]  
P qeP  

X [(Tc, pTe, q + Ta, pTa, q)Cpq 

+ (r~,p To,q-- ra, p r~,q)s~l/ .  (13) 

Unlike in equation (9), there is now no contribution 
to the Bijvoet intensity difference due to each sub- 
structure alone. For a single substructure consisting of 
atoms with spherically symmetric charge distributions, 
undergoing anharmonic vibration, the instantaneous 
scattering is the same for both Friedel reflections. The 
noncentrosymmetric nature of the motion is only 
reflected in the Bijvoet intensity difference when the 
motion of the surrounding substructures is also 
considered. 

As for f a  in equations (9) and (10), the directional 
dependence of T~ can lead to different absolute values 
of the Bijvoet ratios for harmonically equivalent 
reflections at the same (sin 0)/2 value. Such differences 
have been observed experimentally in cubic zinc 
sulphide (Mclntyre, Moss, Boehm & Barnea, 1975); 
similar differences would be expected in wurtzite 
structures (Whiteley, Moss & Barnea, 1978). 

In general, the dominant anharmonic contributions 
to A I  and Iav arise from the terms (Tc, pTa, q -- 
T~, pTc, q). The usual harmonic contributions are due to 
terms containing Tc, pTe, q. We can estimate the average 
relative effect of anharmonicity on the Bijvoet ratio by 
comparing these two contributions. Assuming all atoms 
undergo similar anharmonic vibrations within a par- 
ticular lattice, an estimate of the average proportional 
contribution of anharmonicity to the ratio can be found 
from Ta, p/Tc, p. 

Most noncentrosymmetric sites can be considered to 
have tetrahedral or near-tetrahedral arrangements of at 
least the nearest atoms. As a guide we can assume for 
Ta, p the form appropriate to a purely tetrahedral site 
oriented along a [111] direction (Dawson, Hurley & 
Maslen, 1967). Thus 

Ta, JTc .  p = 8hkl(ksT)2(rc/ao)3flp/(~ (14) 

where k s is Boltzmann's constant, T is the absolute 
temperature, % and tip are the quadratic and cubic 
coefficients of the one-particle potential for a tetra- 
hedral site: 

Vp(u)  = Vo,  p + ½t~p (x  2 + y 2  + z2) + flpxyz. (15) 

In equation (15), x, y and z are the coordinates of the 
instantaneous displacement u of an atom in the pth 
substructure from its equilibrium position and ap is 
related to the usual isotropic Debye-Waller factor Bp 
by ap = 87cZksT/Bp. In several simple inorganic 
compounds I flpl has been observed to be approxi- 

mately 2 x 10 -12 erg A -3, a value that may be useful 
for estimating the influence of anharmonicity in other 
compounds and structures. 

The predictions of equation (14) and the full 
calculations for the zinc blende structure from 
equations (12) and (13) compare well. Also note- 
worthy is the dependence of Ta, ~Tc,  p on at,. Clearly, a 
small value of % is far more influential on the 
possibility of observing the effects of anharmonicity on 
the Bijvoet intensity difference and ratio than the 
anharmonic parameter tip itself. Equation (14) also 
indicates that, as with the effects on the structure 
amplitude, we may expect far more significant changes 
in the Bijvoet differences and ratios due to anharmon- 
icity at either higher temperatures or larger values of 
(sin 0)/2. 

Validity of Friedel's law in noneentrosymmetrie 
structures 

If we take all f a  and T a to be zero, equation (7) 
simplifies to: 

A I ( T a , f a = O ) = 4  Z Z GuGqfc, pf~' spqTc, pTc, q. (16) 
P qeP  

This expression is equivalent to equation (4) of Iwasaki 
(1974). Consequently, A I ( T  a, f a  = 0)vanishes if either 

Gp = 0 for all but one p (17a) 

or  

Yp-- Yq + 27rS.(up-- uq) = nzr (n: integer) (17b) 

for any combination of p and q and any S. 
From these conditions and equation (16) it is 

immediately obvious that AI(Ta, f a  = 0) vanishes for 
any of the three following cases: (i) a centrosymmetric 
crystal [equation (17b)], (ii) a crystal consisting of only 
one type of atom [equation (17a)] or (iii) a crystal 
containing no anomalous scatterers [equation (16)]. 
Iwasaki proposes several specific noncentrosymmetric 
structures, other than these three cases, for which 
Friedel's law is always valid. In every such case con- 
dition (17b) must be satisfied, although it may also be 
necessary for (17a) to be satisfied for a subset of the 
complete set of reflections. In some structures in which 
the positional parameters of all atoms and the three 
components of u are rational fractions of the cell edges, 
(17b) may also be satisfied for reflections with special 
indices. The best known of these is the zinc blende 
structure, for which (17b) becomes 

h + k + l = 2 n .  

Since by choice of a face-centred unit cell h, k and l are 
also constrained to be all odd or all even, A I ( T  a, f , ,  = 
0) will be zero when h, k and l are even. In diffraction 
experiments on such structures, this partial fulfilment of 



264 ANTISYMMETRIC ATOMIC FEATURES IN NONCENTROSYMMETRIC STRUCTURES 

Friedel's law is frequently exploited to increase the 
number of equivalent reflections that can be measured. 

If we include the antisymmetric atomic functions, the 
conditions for Friedel's law holding become even more 
restrictive. For convenience, we will consider their 
influence on AI  separately. 

The effect o f  bonding (T ~ = O) 

For antisymmetric charge distributions alone, from 
equation (9) AI(T~ = 0) vanishes and Friedel's law 
holds if 

Gp = 0 for all p and any S (18a) 

or, 

the structure consists of a pair of substructures that 
are identical except forf ,  having opposite sign. (18b) 

Condition (18a) is trivial. A structure satisfying (18b) 
has a centre of inversion located on the midpoint of the 
line between any two atoms in the different sub- 
structures and hence is centrosymmetric. Thus, when 
f~  4= 0 Friedel's law breaks down for all noncentro- 
symmetric structures. 

Another way of viewing the implications of equation 
(9) is that the first term in equation (9) renders 
condition (17a) invalid; the second term invalidates 
condition (17b). 

From the fact that (17a) is no longer valid, it now 
also follows that Friedel's law generally does not hold 

for  noncentrosymmetric structures o f  elements. 
Since condition (17b) is invalid, the noncentro- 

symmetric structures suggested by Iwasaki will only 
give centrosymmetric X-ray diffraction patterns when 
f a  = 0. Also, the partial validity of Friedel's law, such 
as is observed in zinc blende, will in general break down 
when f a  4= O. This is confirmed by several reported 
measurements of differences between the 222 and 22:2 
reflections in zinc blende structures: GaAs (Colella, 
1971), InSb (Bilderback & Colella, 1976), and ZnSe 
(Mclntyre, Moss, Boehm & Barnea, 1975). 

The effect o f  anharmonicity ( f  a = O) 

If we include only the effects of anharmonic thermal 
vibration, the conditions for A I ( f a  = 0) vanishing are 
from equation (12) 

Gp = 0, for all but one p and for any S (19a) 

or, 

the structure consists of any number of sub- 
structures all of which have the same f "  and 
f "  but may have different expressions for T c 
and T a. (19b) 

Condition (19a) can from our earlier discussion only 
be satisfied for a centrosymmetric structure. The only 

noncentrosymmetric structures that can satisfy (19b) 
are those of elements. 

As in the previous section, since condition (17b) is no 
longer valid, the structures suggested by Iwasaki will 
not obey Friedel's law when T a :/= 0. The partial 
validity of Friedel's law, such as observed in zinc 
blende, will also break down. 

The general case (T. ,  f . =/: O) 

If we include both antisymmetric atomic functions, 
AI  vanishes [equation (7)] when either 

G p = 0, for all p and any S (20a) 

or, 

the structure consists of a pair of sub- 
structures that are identical except for f a  and 
T a having opposite signs. (20b) 

As for condition (18b), a structure satisfying condition 
(20b) is centrosymmetric. The conclusions following on 
from (18a) for A I ( T  a = 0) also apply here. 

It must be noted that the validity of Friedel's law 
now depends on the symmetry properties of fa,  p and 
T.,p. If for a subset of the reflections satisfying 
condition (17b), both f~, p and T~, p are zero for all p, 
then A1 will also vanish for this subset. For example, in 
the zinc blende structure, we will still have AI  = 0 for 
reflections of the type hk0 [the generalized zinc blende 
structure factor expressions have been considered by 
Mclntyre, Moss & Barnea (1979)]. The conventional 
Cartesian axes used to describe the unit cell are the 
axes of the point group of the atom at the origin. Since 
the symmetry element 2 is a subgroup of z~, both f a  and 
T~ are zero in all directions lying within the faces of the 
unit cell. The conditions for the applicability of 
Friedel's law now become even more restrictive than 
before: h + k + l -- 2n, with one of the indices being 
zero. Similar reflection sets obeying Friedel's law may 
also exist in other noncentrosymmetric structures. 

In general, if the point group for a site includes a 
twofold axis, fa and Ta of the atoms at that site will 
vanish in directions perpendicular to that axis. Ob- 
viously, atoms lying on a mirror plane will not have 
antisymmetric components perpendicular to that plane. 

Discussion 

By introducing Dawson's generalized structure factor 
formalism into Iwasaki's substructure description, we 
have been able to obtain generalized expressions for the 
structure amplitudes and hence for the Bijvoet ratios of 
noncentrosymmetric crystals. Estimates for the mean 
effect of the antisymmetric components of bonding 
upon the Bijvoet ratios show that while it is in general 
quite small, specific reflections may be significantly 
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affected and thus provide a sensitive measure of these 
components. Since anharmonic effects are significant 
over a broader range of reciprocal space than the 
effects of bonding, the expression for the mean effect 
may be more useful for the former. 

The inclusion of antisymmetric components has 
important implications for the validity of Friedel's law 
in noncentrosymmetric structures. In instances when in 
the conventional approximation ( fa ,  Ta = 0) sets of 
reflections in noncentrosymmetric structures obey 
Friedel's law, allowance for antisymmetric components 
imposes furthe)r restrictions upon such sets; they now 
generally no lolager obey Friedel's law. 

The effects of antisymmetric components on the 
intensities of reflections are often relatively greatest for 
weak reflections. Since these are also least sensitive to 
extinction, their measurement is of considerable value. 

In noncentrosymmetric structures of elements we 
have shown that nonzero Bijvoet intensity differences 
are allowed if one recognizes antisymmetric compo- 
nents of the charge distribution due to bonding. In 
particular, such effects are to be expected in trigonal Se 
and Te structures (Mclntyre, 1978) in which all of the 
constituent substructures are geometrically identical 
but the orientations of the atomic environments about 
each atom differ. Chandrasekaran (1968) has also 
suggested that Bijvoet intensity differences may be 
observed in the noncentrosymmetric elements. 
However, our arguments for their appearance are 
independent of his postulates. 

So far the consequences of the presence of antisym- 
metric components have only been observed in simple 
noncentrosymmetric structures: GaAs (Colella, 1971), 
ZnS (Mclntyre, Moss, Boehm & Barnea, 1975), InSb 
(Bilderback & Colella, 1976), CdSe (Whiteley, Moss & 
Barnea, 1978), and ZnSe (Mclntyre, Moss & Barnea, 
1979). It is to be expected that such effects will be 
observable and even more varied in the more complex 
noncentrosymmetric organic and biologically impor- 
tant structures where their manifestations may be of 
particular interest and importance. Similarly, studies of 
the variation of some of these effects with temperature 
should prove of considerable value. 

Neglect of antisymmetric components in accurate 
structure studies may lead to systematic errors. This 
will occur whenever a complete or partial satisfaction 
of Friedel's law for a noncentrosymmetric structure is 
unjustifiably assumed and exploited to increase the 
number of 'equivalent reflections' (in an attempt to 
improve the experimental accuracy) or to decrease the 
time required to obtain a complete reflection set. This 

failure to recognize the influence of antisymmetric 
atomic features on the breakdown of Friedel's law may 
lead in the former case predominantly to an over- 
estimate of errors and, more importantly, in the latter to 
incorrect refinement of the parameters. 

Whereas the restrictions on Friedel's law require 
extended data collection in structural studies, they also 
provide a further qualitative and quantitative means of 
detecting a significant influence of antisymmetry in 
vibration and charge distribution on the diffraction 
experiment. 
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